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A B S T R A C T

In this paper, an efficient numerical scheme is settled for solving two-dimensional Bratu–Gelfand problem,
namely Hybrid Orthonormal Bernstein and Block-Pulse functions wavelet (HOBW) is presented for boundary
value problems administered by nonlinear partial differential equations which effectively combines the
Orthonormal Bernstein, Block-Pulse functions and the generalized wavelet. Operational Matrix of integration is
utilized to provide an approximate result of the BG problems. By using the Operational Matrix, differentiation is
changed to the nonlinear system of equations which can be disbanded via the Newton Raphson technique. As per
our concentrated inquiry there is no exact solution of the problem and can solve the problem with higher
accuracy than the methodologies used to solve this problem. The result is plotted for different values of then
compared with the previous numerical results obtained.

Introduction

The Bratu–Gelfand (BG) problem is an elliptic nonlinear partial
differential equation. It is performing from the improvement of torching
model in fuel combustion theory [1–3]. BG has the variety of applica-
tion in science and chemistry to depict chemical and physical models
like; fuel ignition model of the thermal combustion theory, nano-
technology models, radiative heat transfer chemical reaction processes
and chemical reactor theory and nanotechnology [4]. Numerical and
analytical techniques are applied for 1D and 2D BG equation [5–14].
This problem is contemplated by numerous creators utilizing different
techniques such as the wavelet homotopy analysis method (WHAM)
[15], the finite difference [16], Spline method [17], VIM and Green’s
function [18–20], The relation between the Legendre and wavelet
methods [21,22], differential transformation [23], Taylor’s decom-
position method [24], Lie-group shooting method [25], Sinc-Galerkin
method [26] and Block Nyström method [27]. Most of these ex-
aminations are computationally expensive. Further, they could not
describe more than one solution for such nonlinear issue.

In recent papers, Orthonormal Bernstein and Block-Pulse functions
have become increasingly famous in the numerical solution of integral
and partial differential equation. The benefits of this strategy lie in its
simple utilize and adaptability. Also, HOBW method can yield accurate
results with relatively much fewer points compared with the previous

techniques such as the finite difference and finite element methods.
These results confirm that, HOBW is very effective and more accurate
than some other methods.

The outline of the paper is organized as follows. In Section
“Dominant equation” we introduce a formulation of two-dimensional
BG equation. In Section “The HOBW scheme and their Properties”, the
analysis of the method has been discussed. Description of the method
has been discussed in Section “Description of the method”. Finally, we
report our numerical results and demonstrate the efficiency and accu-
racy of the proposed numerical scheme in Section “Illustrative ex-
amples”.

Dominant equation

Two-dimensional BG equation is a nonlinear boundary value pro-
blem that can be written as [28]:
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Where x y x y: {( , ) 0 1, 0 1}, and denotes the reaction
term, > 0. The confines conditions are defined as;

= = = =u y u y u x u x x y(0, ) (1, ) ( , 0) ( , 1) 0, , (2.2)

where means the unit square confines
=x y{ , [0; 1] [0; 1]}.
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However, the two-dimensional analytical result that satisfies the
confines conditions and additionally the differential equation at just
one collocation point (0.5, 0.5) was presented in [27]:
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The HOBW scheme and their properties

One dimensional HOBW method

Wavelets constitute a group of functions constructed from dilation
and translation of a single function x( ) called the mother wavelet. In
which parameter of dilation a and parameter of translation b vary
continuously.

=x a t b
a

a b R a( ) | | , , , 0.a b,
1

2

By letting aand b be discrete values such as =a a k
0 ,

= > >b nb a a b n, 1, 0,k
0 0 0 0 and k are positive integers, we attain the

family of discrete wavelets:
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Then we see that x( )k n, forms a wavelet basis for L R( ).2 In detail,
when, =a 20 , =b 1,0 then x( )k n, forms basis. Here,

=HOBW t HOBW k i j t( ) ( , , , )i j, involves four arguments, =i 1, .,2 ,k 1

k is to be any positive integer, j is the degree of the Bernstein poly-
nomials, andt is the normalized time. They HOBW t( )i j, are defined on
[0, 1) as [29]:

=HOBW x
l
j x r r x r x r

otherewise
( ) 2 (2 ) ( 2 )

0
i j

k
i

j
i

k l j
i i

,
1

1
1

1
k 1

2

(3.2)

= +r i a ib(2 )
2i

k

k

1

1

Where =i 1, 2, .,2 ,k 1 =j M0, 1, ., 1 and k is a positive in-
teger. Thus, we attain our new basis as
HOBW HOBW HOBW{ , , ., }M1,0 1,1 2 , 1k 1 and any function is truncated
with them.

The HOBW detect orthonormal basis is:
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where (.,.) called the inner product in L [0, 1)2 The HOBWhas
compact support , .i i1

2 2k k1 1

Two dimensional HOBW scheme

Two-dimensional HOBW can be expressed as the product of one-
dimensional HOBW as follows:

=HOBW x t HOBW x HOBW t r t r
otherewise

( , ) ( ) ( )
0

i j n m
i j n m i i

, , ,
, , 1

(3.3)

where,

=HOBW x
l
j x r r x r x r

otherewise
( ) 2 (2 ) ( 2 )

0
i j

k
i

j
i

k l j
i i

,
1

1
1

1
k 1

2

(3.4)

= ( )HOBW t
n
m t r r t r t r

otherewise
( ) 2 (2 ) ( 2 )

0
n m

k
i

m
i

k n m
i i

,
1

1
1

1
k 1

2

(3.5)

= +r i a i b(2 )
2i

k

k

1

1

where =i 1, 2, , 2 ,k 1 = =n j1, 2, ,2 , 0, 1, ,k 1'

=M m M1, 0, 1, , 1' and k is a positive integer.

Function approximation by using the HOBW functions

Any function u x t( , ), which is integrable is truncated by using the
HOBW scheme as follows:
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the infinite series truncated to the following:
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whereUT and HOBW are ×MM2 2 1k k1 1 ' vector defined as follows:
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HOBW operational matrix of integration

The OM instituted in HOBW for variable x is obtained as follows:
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Description of the method

For the numerical result of Equation
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Integrating Eq. (4.2) regarding to x , gives
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On suitable substitution from Eqs. (4.2) to (4.11) into (4.1), BG
problem can be reduced to the following iterative one:
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Suitable collocation points are the zeros of Chebyshev polynomial
[30]
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Eq. (4.13) is a system of MM2 2k k1 1 ''
nonlinear equations which can

be disbanded for the elements ofC by the well-known Newton-Raphson
method.

Illustrative examples

The execution of the approach method for BG problem is illustrated;
some cases are presented. The per shapes reveal that the scheme is
profitable and straightforward. All computations were carried out using
Maple on a personal computer. Also, the graph of approximate solu-
tions, at = = = =M M2 4, 2 4, 3 and 3k k1 1 ''

, for different values of
= 0.05, 0.5, 1, 4, 7.027661438 have been plotted in Figs. 5.1–5.5. Re-

sults in Tables 5.1 and 5.2.

Error analysis

Theorem 1. A function u x t L( , ) w
2 ([0,1]) with bounded second

derivative, say u x y N( , )
x

2
2 can be expanded using HOBW and

converges to u x t( , ), i.e.,

=u x t C A A I KK HOBW x t( , ) ( ) ( , )T T

Since the truncated HOBW is a proximate outcome of BG problem, so the
error function E x t( , ) for u x t( , ) as follows:

=E x t u x t C A A I KK HOBW x t( , ) | ( , ) ( ( ) ( , ))|T T

The following theorem gives an error bound of the proximate the
outcome by using HOBW method.
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Theorem 2. Suppose that u x t C( , ) [0, 1]m and
C A A I KK HOBW x t( ) ( , )T T is the approximate the outcome using the

HOBW. Then the error bound would be obtained as follows:
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Fig. 5.1. The outcome of BG equation for = 0.05.

Fig. 5.2. The outcome of BG equation for = 0.5.
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Conclusion

A numerical scheme for resolving the 2DBG equations is proposed.
This scheme is instituted in HOBW. We introduce an approximation
approach to settle the BG problem. The HOBW is much more reliable
and achieved much more quickly. We hired the MAPLE algorithm fsolve
to decide the nonlinear system. The results obtained here are compared
with those obtained using the Iterative differential quadrature method

Fig. 5.3. The outcome of BG equation for = 1.

Fig. 5.4. The outcome of BG equation for = 4.

Fig.5.5. The outcome of BG equation for = 7.027661438.

Table 5.1
Comparison between the HOBW at = = = =M M2 4, 2 4, 3 and 3k k1 ' 1 ' and
[31] at = ×N 7 7 for different .

ulowerusing HOBW uupperusing HOBW ulower[31] uupper [31]

0.05 0.0031332 9.0779426 0.0031059 9.0777656
1 0.0660366 5.1357731 0.0660123 5.1352663
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[31], the HOBW scheme provides accurate outcomes for both upper and
lower branches for critical values of . The solution obtained using the
HOBW method demonstrate that this approach can solve the 2DBG
effectively. It was apparent that, the HOBW method for a specific es-
timation of k M, , as M k,' ' increased, the accuracy was increased, and
for a certain value of M k,' ' as k M, increased, the accuracy was in-
creased as well.
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